miR-133a Regulates Adipocyte Browning In Vivo
نویسندگان
چکیده
Prdm16 determines the bidirectional fate switch of skeletal muscle/brown adipose tissue (BAT) and regulates the thermogenic gene program of subcutaneous white adipose tissue (SAT) in mice. Here we show that miR-133a, a microRNA that is expressed in both BAT and SATs, directly targets the 3' UTR of Prdm16. The expression of miR-133a dramatically decreases along the commitment and differentiation of brown preadipocytes, accompanied by the upregulation of Prdm16. Overexpression of miR-133a in BAT and SAT cells significantly inhibits, and conversely inhibition of miR-133a upregulates, Prdm16 and brown adipogenesis. More importantly, double knockout of miR-133a1 and miR-133a2 in mice leads to elevations of the brown and thermogenic gene programs in SAT. Even 75% deletion of miR-133a (a1(-/-)a2(+/-) ) genes results in browning of SAT, manifested by the appearance of numerous multilocular UCP1-expressing adipocytes within SAT. Additionally, compared to wildtype mice, miR-133a1(-/-)a2(+/-) mice exhibit increased insulin sensitivity and glucose tolerance, and activate the thermogenic gene program more robustly upon cold exposure. These results together elucidate a crucial role of miR-133a in the regulation of adipocyte browning in vivo.
منابع مشابه
MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension.
MicroRNAs play an important role in myocardial diseases. MiR-133a regulates cardiac hypertrophy, while miR-29b is involved in cardiac fibrosis. The aim of this study was to evaluate whether miR-133a and miR-29b play a role in myocardial fibrosis caused by Angiotensin II (Ang II)-dependent hypertension. Sprague-Dawley rats were treated for 4 weeks with Ang II (200 ng/kg/min) or Ang II + irbesar...
متن کاملThyroid hormone regulates muscle fiber type conversion via miR-133a1
It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1)...
متن کاملTumor suppressor functions of miR-133a in colorectal cancer.
UNLABELLED Dysregulated microRNA (miRNA) expression was profiled through a miRNA array comparison between human colorectal cancer tumors and their adjacent normal tissues. Specifically, using laser capture micro-dissection, miR-133a was shown to be significantly downregulated in primary colorectal cancer specimens compared with matched adjacent normal tissue. Ectopic expression of miR-133a sign...
متن کاملMicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts.
RATIONALE MicroRNA (miR)-133a regulates cardiac and skeletal muscle differentiation and plays an important role in cardiac development. Because miR-133a levels decrease during reactive cardiac hypertrophy, some have considered that restoring miR-133a levels could suppress hypertrophic remodeling. OBJECTIVE To prevent the "normal" downregulation of miR-133a induced by an acute hypertrophic sti...
متن کاملmiR-1/133a Clusters Cooperatively Specify the Cardiomyogenic Lineage by Adjustment of Myocardin Levels during Embryonic Heart Development
miRNAs are small RNAs directing many developmental processes by posttranscriptional regulation of protein-coding genes. We uncovered a new role for miR-1-1/133a-2 and miR-1-2/133a-1 clusters in the specification of embryonic cardiomyocytes allowing transition from an immature state characterized by expression of smooth muscle (SM) genes to a more mature fetal phenotype. Concomitant knockout of ...
متن کامل